9,305 research outputs found

    A new map-making algorithm for CMB polarisation experiments

    Full text link
    With the temperature power spectrum of the cosmic microwave background (CMB) at least four orders of magnitude larger than the B-mode polarisation power spectrum, any instrumental imperfections that couple temperature to polarisation must be carefully controlled and/or removed. Here we present two new map-making algorithms that can create polarisation maps that are clean of temperature-to-polarisation leakage systematics due to differential gain and pointing between a detector pair. Where a half wave plate is used, we show that the spin-2 systematic due to differential ellipticity can also by removed using our algorithms. The algorithms require no prior knowledge of the imperfections or temperature sky to remove the temperature leakage. Instead, they calculate the systematic and polarisation maps in one step directly from the time ordered data (TOD). The first algorithm is designed to work with scan strategies that have a good range of crossing angles for each map pixel and the second for scan strategies that have a limited range of crossing angles. The first algorithm can also be used to identify if systematic errors that have a particular spin are present in a TOD. We demonstrate the use of both algorithms and the ability to identify systematics with simulations of TOD with realistic scan strategies and instrumental noise.Comment: 11 pages, 6 figure

    THE DEFAULT MODE NETWORK AND EXECUTIVE FUNCTION: INFLUENCE OF AGE, WHITE MATTER CONNECTIVITY, AND ALZHEIMER’S PATHOLOGY

    Get PDF
    The default mode network (DMN) consists of a set of interconnected brain regions supporting autobiographical memory, our concept of the self, and the internal monologue. These processes must be maintained at all times and consume the highest amount of the brain’s energy during its baseline state. However, when faced with an active, externally-directed cognitive task, the DMN shows a small, but significant, decrease in activity. The reduction in DMN activity during the performance of an active, externally-directed task compared to a baseline state is termed task-induced deactivation (TID), which is thought to ‘free-up’ resources required to respond to external demands. However, older adults show a reduced level of TID in the DMN. Recently, it has begun to be appreciated that this decrease in TID may be associated with poorer cognitive performance, especially during tasks placing high demands on executive function (EF). Diminished DMN TID has not only been associated with increasing age but also with multiple age-related neurobiological correlates such as accumulating Alzheimer’s disease (AD) pathology and reductions in white matter (WM) connectivity. However, these biological factors—age, WM connectivity reductions and increasing AD pathology—are themselves related. Based on the literature, we hypothesized that declining WM connectivity may represent a common pathway by which both age and AD pathology contribute to diminished DMN TID. Further, we hypothesized that declines in DMN function and WM connectivity would predict poorer in EF. Three experiments were carried out to test these hypotheses. Experiment 1 tested whether WM connectivity predicted the level of DMN TID during a task requiring a high level of EF. Results from 117 adults (ages 25-83) showed that WM connectivity declined with increasing age, and that this decline in WM connectivity was directly associated with reduced DMN TID during the task. Experiment 2 tested whether declines in WM connectivity explained both age-related and AD pathology-related declines in DMN TID. Results from 29 younger adults and 35 older adults showed that declining WM connectivity was associated with increasing age and AD pathology, and that this decline in WM connectivity was a common pathway for diminished DMN TID associated with either aging or AD pathology. Experiment 3 investigated whether measures of WM connectivity and DMN TID at baseline could predict EF measured using clinically-used tests. Results from 29 older adults from Experiment 2 showed that less DMN TID predicted poorer EF at baseline and diminished WM connectivity at baseline predicted a greater decline in EF after 3 years. Further, WM connectivity explained reductions in EF predicted by baseline AD pathology, as well as further reductions in EF not predicted by baseline AD pathology. Together the results of these studies suggest that WM connectivity is a key pathway for age-related and AD pathology-related patterns of diminished DMN TID associated with poorer EF. Further, WM connectivity may represent a potential therapeutic target for interventions attempting to prevent future declines in EF occurring in aging and AD

    Money and happiness : rank of income, not income, affects life satisfaction

    Get PDF
    Does money buy happiness, or does happiness come indirectly from the higher rank in society that money brings? Here we test a rank hypothesis, according to which people gain utility from the ranked position of their income within a comparison group. The rank hypothesis contrasts with traditional reference income hypotheses, which suggest utility from income depends on comparison to a social group reference norm. We find that the ranked position of an individual’s income predicts general life satisfaction, while absolute income and reference income have no effect. Furthermore, individuals weight upward comparisons more than downward comparisons. According to the rank hypothesis, income and utility are not directly linked: Increasing an individual’s income will only increase their utility if ranked position also increases and will necessarily reduce the utility of others who will lose rank

    Optimal scan strategies for future CMB satellite experiments

    Full text link
    The B-mode polarisation power spectrum in the Cosmic Microwave Background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarisation must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarisation experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example we go on to identify a scan strategy suitable for the CMB satellite proposed for the ESA M5 call. considering the practical considerations of fuel requirement, data rate and the relative orientation of the telescope to the earth. Having chosen a scan strategy we then go on to investigate the suitability of the scan strategy.Comment: 21 pages, 11 figures, Comments welcom

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    Energy Dependence of Scattering Ground State Polar Molecules

    Full text link
    We explore the total cross section of ground state polar molecules in an electric field at various energies, focusing on RbCs and RbK. An external electric field polarizes the molecules and induces strong dipolar interactions leading to non-zero partial waves contributing to the scattering even as the collision energy goes to zero. This results in the need to compute scattering problems with many different values of total M to converge the total cross section. An accurate and efficient approximate total cross section is introduced and used to study the low field temperature dependence. To understand the scattering of the polar molecules we compare a semi-classical cross section with quantum unitarity limit. This comparison leads to the ability to characterize the scattering based on the value of the electric field and the collision energy.Comment: Accepted PRA, 10 pages, 5 figure

    Engineering design of sub-micron topographies for simultaneously adherent and reflective metal-polymer interfaces

    Get PDF
    The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces

    voxEUROPP Episode 2: Eastern Europe and Democracy

    Get PDF
    Today EUROPP launches the second episode in our voxEUROPP series of podcasts. Presented by Chris Gilson and Stuart A Brown, voxEUROPP draws on academic experts from EUROPP to discuss the latest issues across European governance, economics, politics, culture and society, both at the European Union and national levels

    Cooperative Evolution

    Get PDF
    Cooperative Evolution offers a fresh account of evolution consistent with Charles Darwin's own account of a cooperative, inter-connected, buzzing and ever-changing world. Told in accessible language, treating evolutionary change as a cooperative enterprise brings some surprising shifts from the traditional emphasis on the dominance of competition. The book covers many evolutionary changes reconsidered as cooperation. These include the cooperative origins of life, evolution as a spiral rather than a ladder or tree, humans as a part of natural systems rather than the purpose, relationships between natural and social change, and the role of the individual in adaptive radiation onto new ground. The story concludes with a projection of human evolution from the past into the future

    Removing beam asymmetry bias in precision CMB temperature and polarisation experiments

    Full text link
    Asymmetric beams can create significant bias in estimates of the power spectra from CMB experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. Here, we derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and general scan strategies. A simple consequence of asymmetric beams is that, even with an ideal scan strategy where every sky pixel is seen at every orientation, there will be residual coupling from temperature power to B-mode power if the orientation of the beam asymmetry is not aligned with the orientation of the co-polarisation. We test our correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. The simulated experiments use realistic scan strategies, noise levels and highly asymmetric beams. We also develop a map-making algorithm that is capable of removing beam asymmetry bias at the map level. We demonstrate its implementation using simulations and show that it is capable of accurately correcting both temperature and polarisation maps for all of the effects of beam asymmetry including the effects of temperature to polarisation leakage.Comment: 18 pages, 9 figure
    • …
    corecore